:py:mod:`detrend.optimizers` ============================ .. py:module:: detrend.optimizers Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: detrend.optimizers.Optimizers detrend.optimizers.OptimizersKeplerTESS detrend.optimizers.OptimizersMultivisit Attributes ~~~~~~~~~~ .. autoapisummary:: detrend.optimizers.comm detrend.optimizers.size detrend.optimizers.rank detrend.optimizers.printlog detrend.optimizers.fig_ext .. py:data:: comm .. py:data:: size .. py:data:: rank .. py:data:: printlog .. py:data:: fig_ext :annotation: = ['png', 'pdf'] .. py:class:: Optimizers Optimizers class: it contains al list of all the possible optimizers used for Bayesian analysis. The Emcee function is used for MCMC analysis and t prints the results in the most appropriate format for emcee. The Ultranest function uses Nested sampling and returns also the characteristic plots for this alsorithm. .. py:method:: emcee(self, inpars=None, dataset=None, olog=None, params_lm_loop=None, star=None) .. py:method:: ultranest(self, inpars=None, dataset=None, olog=None, params_lm_loop=None, star=None) .. py:class:: OptimizersKeplerTESS .. py:method:: emcee(self, olog=None, dataset=None, epoch_folder=None, params_lm_loop=None, star=None, epoch_name=None, stats_lm=None, visit_args=None, star_args=None, emcee_args=None) .. py:method:: ultranest(self, olog=None, dataset=None, epoch_folder=None, params_lm_loop=None, star=None, epoch_name=None, stats_lm=None, visit_args=None, star_args=None, ultranest_args=None) .. py:class:: OptimizersMultivisit .. py:method:: emcee(self, inpars=None, M=None, olog=None, new_params=None, T_0=None, T_ref=None, P_ref=None, log_omega0=None, log_S0=None, extra_priors=None) .. py:method:: ultranest(self, inpars=None, M=None, olog=None, new_params=None, T_0=None, T_ref=None, P_ref=None, log_omega0=None, log_S0=None, extra_priors=None)